US ERA ARCHIVE DOCUMENT

CATALOG DOCUMENTATION EMAP SURFACE WATERS PROGRAM LEVEL DATABASE 1993-1996 MID-ATLANTIC STREAMS DATA STREAM WATERSHED DATA

TABLE OF CONTENTS

7		a mm	Thurst	m T 12 T	α a m τ α at
	DAIA		1 1 2 15.13		CATION

- 2. INVESTIGATOR INFORMATION
- 3. DATA SET ABSTRACT
- 4. OBJECTIVES AND INTRODUCTION
- 5. DATA ACQUISITION AND PROCESSING METHODS
- 6. DATA MANIPULATIONS
- 7. DATA DESCRIPTION
- 8. GEOGRAPHIC AND SPATIAL INFORMATION
- 9. QUALITY CONTROL / QUALITY ASSURANCE
- 10. DATA ACCESS
- 11. REFERENCES
- 12. TABLE OF ACRONYMS
- 13. PERSONNEL INFORMATION

1. DATA SET IDENTIFICATION

- 1.1 Title of Catalog Document
 EMAP Surface Waters Stream Database
 1993-1996 Mid-Atlantic Streams
 Stream Watershed Characteristic Data Summarized by Stream
- 1.2 Authors of the Catalog Entry U.S. EPA NHEERL Western Ecology Division Corvallis, OR
- 1.3 Catalog Revision Date February 1999
- 1.4 Data Set Name WATCHR
- 1.5 Task Group Surface Waters
- 1.6 Data Set Identification Code

128

1.7 Version

002

1.8 Requested Acknowledgment

These data were produced as part of the U.S. EPA's Environmental Monitoring and Assessment Program (EMAP). If you publish these data or use them for analyses in publications, EPA requires a standard statement for work it has supported:

"Although the data described in this article have been funded wholly or in part by the U.S. Environmental Protection Agency through its EMAP Surface Waters Program, it has not been subjected to Agency review, and therefore does not necessarily reflect the views of the Agency and no official endorsement of the conclusions should be inferred."

2. INVESTIGATOR INFORMATION

2.1 Principal Investigator
Dr. John Stoddard
U.S. Environmental Protection Agency
NHEERL Western Ecology Division
200 S.W. 35th Street
Corvallis, OR 97333

2.2 Investigation Participant - Sample Collection
Oregon State University
State of Virginia
State of West Virginia
State of Maryland
State of Pennsylvania
University of Maine
U.S. Fish and Wildlife Service
U.S. Environmental Protection Agency
Office of Research and Development
Region III

3. DATA SET ABSTRACT

3.1 Abstract of the Data Set

The primary function of the stream watershed characteristics data is to provide a description of the watershed setting within which the stream exists. The data can provide insight into what the expected conditions in the stream are and insight into the extent to which human activities within the watershed impact the stream quality.

3.2 Keywords for the Data Set Watershed, land cover, land use, road density, human population, stream watersheds

4. OBJECTIVES AND INTRODUCTION

4.1 Program Objective

The Environmental Monitoring and Assessment Program (EMAP) was designed to periodically estimate the status and trends of the Nation's ecological resources on a regional basis. EMAP provides a strategy to identify and bound the extent, magnitude and location of environmental degradation and improvement on a regional scale based on a probability-based statistical survey design.

4.2 Data Set Objective

This data set is part of a demonstration project to evaluate approaches to monitoring streams in EMAP. The data set contains the results of analysis of the stream watershed and its characteristics which influence stream quality.

4.3 Data Set Background Discussion

Watershed information is gathered to describe the watershed setting, thus helping to define the "expected conditions" for the stream, and to describe the human activities within the watershed which are expected to impact stream quality.

4.4 Summary of Data Set Parameters

Watershed Characterization parameters include physical characteristics such as watershed area, elevation, and approximate distance to ocean. They also include derived human influence characteristics such as land use categorization, housing unit and human population density, and point pollution source characterization.

- 5. DATA ACQUISITION AND PROCESSING METHODS
- 5.1 Data Acquisition
- 5.1.1 Sampling Objective

To obtain a picture of watershed characteristics based on the most recent data sources which are available.

5.1.2 Sample Collection Methods Summary

The watershed for each stream is outlined on a map and digitized into a GIS coverage. This coverage is overlain with other data sources, such as satellite based landcover data, or digital information on road networks, or data bases on point source discharges. The watershed intersection of these coverages is then summarized for each watershed and collapsed into a series of watershed characteristics or metrics.

5.1.3 Sampling Start Date

NA

5.1.4 Sampling End Date

NA

5.1.5 Platform

Desk top

5.1.6 Sampling Gear

Sun Work Station and ARC-INFO GIS software

5.1.7 Manufacturer of Instruments

NA

5.1.8 Key Variables

NA

- 5.1.9 Sampling Method Calibration NA
- 5.1.10 Sample Collection Quality Control See Lazorchak, et al. 1998.
- 5.1.11 Sample Collection Method Reference Chaloud, D.J. and D.V. Peck. 1994. Environmental Monitoring and Assessment Program: Integrated Quality Assurance Project Plan for the Surface Waters Resource Group, 1994 Activities. EPA 600/X-91/080, Rev. 2.00. U.S. Environmental Protection Agency, Las Vegas Nevada.

Lazorchak, J.M., Klemm, D.J., and Peck D.V. (editors). 1998. Environmental Monitoring and Assessment Program- Surface Waters: Field Operations and Methods for Measuring the Ecological Condition of Wadeable Streams. EPA/620/R-94/004F. U.S. Environmental Protection Agency, Washington, D.C.

- 5.1.12 Sample Collection Method Deviations
- 5.2 Data Preparation and Sample Processing
- 5.2.1 Sample Processing Objective See Lazorchak, et al. (1998) and Chaloud and Peck (1994).
- 5.2.2 Sample Processing Methods Summary See Lazorchak, et al. (1998) and Chaloud and Peck (1994).
- 5.2.3 Sample Processing Method Calibration
 See Lazorchak, et al. (1998) and Chaloud and Peck (1994).
- 5.2.4 Sample Processing Quality Control See Lazorchak, et al. (1998) and Chaloud and Peck (1994).
- 5.2.5 Sample Processing Method Reference See Lazorchak, et al. (1998) and Chaloud and Peck (1994).
- DATA MANIPULATIONS
- 6.1 Name of New or Modified Values None.
- 6.2 Data Manipulation Description See Chaloud and Peck (1994).

7. DATA DESCRIPTION

Parameter	Data			Parameter
SAS Name	Type	Len	Format	Label
AG_TOT	Num	8		<pre>% watershed - agricultural lands</pre>
AIREMIS	Num	8		# factories/power plants emitting air pollutants
				w/i watershed
AREA_WS	Num	8		Watershed area digitized from maps
TRI3	Num	8		# sites monitored by TRIS (Reg 3)
URB_TOT	Num	8		% watershed - urban lands
VIO	Num	8		# sites w/ >=1 emmis vio (1/90-3/95)-PCS)
WETL_TOT	Num	8		% watershed wetlands
WSPTDEN	Num	8		Density of pt. source dischargers (pts/ sq km)
YEARORIG	Num	8		First year sampled
ZAIREMIS	Num	8		# factories/power plants emitting air pollutants
				w/i the zipcode polygon
ZCERC2	Num	8		# sites monitored by CERCLIS (Reg 2) w/i the
				zipcode polygons
ZCERC3	Num	8		# sites monitored by CERCLIS (Reg 3) w/i the
				zipcode polygons
ZIPALL	Num	8		Sum of all point source dischargers within the
				zipcode polygons
ZIPPL	Num	8		Sum of ZPL2 and ZPL3 in zipcode polygons
ZIPPTDEN	Num	8		Approx. density of pt. source dischargers
ZIP_KM2	Num	8		Area of zipcode polygons (sq km)
ZPCSIFD	Num	8		# discharge sites tracked by PCS within zipcode
				polygons
ZPL2	Num	8		# "superfund" sites tracked by NPL (Reg 2) within
				zipcode polygons
ZPL3	Num	8		# "superfund" sites tracked by NPL (Reg 3) within
				zipcode polygons
ZRCRA2	Num	8		# sites monitored by RCRIS (Reg 2) within zipcode
				polygons
ZRCRA3	Num	8		<pre># sites monitored by RCRIS (Reg 3) within zipcode</pre>
				polygons
ZTRI2	Num	8		# sites monitored by TRIS (Reg 2) within zipcode
				polygons
ZTRI3	Num	8		# sites monitored by TRIS (Reg 3) within zipcode
				polygons
ZVIO	Num	8		# sites $w/ >= 1$ emmis. vio. $(1/90-3/95) - PCS$
				within zipcode polygons

7.1.6 Precision to which values are reported

7.1.7 Minimum Value in Data Set

Name	Min
AG_TOT	0
AIREMIS	0
AREA_WS	3.42
ASPCTDEG	1
BAR_TOT	0
CERC2	0
CERC3	0
DISTOT	0
ELEV	10
FOR_TOT	0
H2O_TOT	0
HI_PT	15
HOUDENKM	0
HOUSINGU	0
KM_SEA	6
KM_STRMS	0.002
LAT_DD	36.5535
LON_DD	-83.4888
LTROFF_M	0.3
MAPSCDIG	24000
MINE_TOT	0
NONRES	0
PCSIFD	0
PL2	0
PL3	0
POPDENKM	0
POPEST	0
PRECIP_M	0.73
RCRA2	0
RCRA3	0
RD_DEN	0
SLOPE	0
SUMALL	0
SUMPL	0
TOT_RD	0
TRI2	0
TRI3	0
URB_TOT	0
VIO	0
WETL_TOT	0
WSPTDEN	0
YEARORIG	1993
ZAIREMIS	0
ZCERC2	0
ZCERC3	0
ZIPALL	0
ZIPPL	0
ZIPPTDEN	0
ZIP_KM2	27.2084
ZPCSIFD	0

7.1.7 Minimum Value in Data Set, continued

```
ZPL2 0
ZPL3 0
ZRCRA2 0
ZRCRA3 0
ZTRI2 0
ZTRI3 0
ZVIO 0
```

7.1.7 Maximum Value in Data Set

```
Name
        Max
-----
AG_TOT
        100
AIREMIS 3
AREA_WS 59445.7
ASPCTDEG 357
BAR_TOT 26.27
CERC2
         0
CERC3
         1
DISTOT
         100
ELEV
         1173
FOR_TOT 100.01
H2O_TOT 15.68
HI_PT
         1457
HOUDENKM 1205.999
HOUSINGU 19429.414
KM SEA
         518
KM_STRMS 102.726
LAT_DD
         42.355663889
LON_DD
         -74.2589
LTROFF_M 1.02
MAPSCDIG 250000
MINE_TOT 20.71
NONRES
         37.28
PCSIFD
         25
PL2
         0
PL3
         0
POPDENKM 2625.355
POPEST 49394.983
PRECIP_M 1.623
RCRA2
         1
RCRA3
RD_DEN
         113.34
SLOPE
         0.42
SUMALL
         25
SUMPL
         0
         1091459.46
TOT_RD
TRI2
         0
TRI3
         11
URB_TOT 88.61
VIO
         3
WETL_TOT 4.9
```

7.1.7 Maximum Value in Data Set, continued

```
WSPTDEN 2.977963073
YEARORIG 1994
ZAIREMIS 12
ZCERC2
ZCERC3
       3
ZIPALL 165
ZIPPL
ZIPPTDEN 0.210387588
ZIP KM2 2364.5021
ZPCSIFD 149
ZPL2
ZPL3
         3
ZRCRA2
         3
ZRCRA3
         0
         5
ZTRI2
ZTRI3
         20
         12
ZVIO
```

7.2 Data Record Example

7.2.1 Column Names for Example Records

```
"AG_TOT", "AIREMIS", "AREA_WS", "ASPCTDEG", "BAR_TOT", "CERC2", "CERC3", "COM_STRS", "DISTOT", "ELEV", "FEN_SECT", "FOR_TOT", "H2O_TOT", "H1_PT", "HOUDENKM", "HOUSINGU", "KM_SEA", "KM_STRMS", "LAT_DD", "LON_DD", "LTROFF_M", "MAPSCDIG", "MINE_TOT", "NESTEDWS", "NONRES", "PCSIFD", "PL2", "PL3", "POPDENKM", "POPEST", "PRECIP_M", "RCRA2", "RCRA3", "RD_DEN", "SAMPLED", "SECTNAME", "SLOPE", "STRMNAME", "STRM_ID", "SUMALL", "SUMPL", "TOT_RD", "TR12", "TR13", "URB_TOT", "VIO", "WETL_TOT", "WSPTDEN", "YEARORIG", "ZAIREMIS", "ZCERC2", "ZCERC3", "ZIPALL", "ZIPPL", "ZIPPTDEN", "ZIP_KM2", "ZPCSIFD", "ZPL2", "ZPL3", "ZRCRA2", "ZRCRA3", "ZTR12", "ZTR13", "ZVIO"
```

7.2.2 Example Data Records

```
50.16,0,1997.87,154,0,0,0,"XXXXX",50.16,10,"3a",49.84,0,15,6.741,134.669,27,.,38.52530,-75.63110,0.439,24000,0,"XXXXX",0,0,0,0,17.706,353.747,1.123,0,0,12.44,"Yes","EMABAYED_SECTION",0,"TUSOCKY BR","DE750S",0,0,24852.07,0,0,0,0,0,0,0,0,000000000,1994,0,0,1,3,0,0.008806202,340.6690,2,0,0,0,0,0,0,0,1
```

```
26.15,0,237.97,234,0,0,0," ",26.15,649,"8d",73.85,0,765,5.790,
13.780,223,1.2,39.68369,-79.47240,0.72,24000,0,
" ",0,0,0,0,15.370,36.580,1.18,0,0,17.96,"Yes","ALLEGHENY_MOUNTAIN_SECTION",
0.06,"S. BR. LAUREL RUN","MD507S",0,0,4274.48,0,0,0,0,0,0.000000000,
1993,0,0,0,31,0,0.058269976,532.0064,31,0,0,0,0,0,0,1
```

```
0,0,95.53,320,0,0,0," ",0,652,"8d",100,0,789,1.310,1.250,194,0.709,39.54469,
-79.18200,0.68,24000,0," ",0,0,0,0,2.890,2.760,1.06,0,0,24.89,
"Yes","ALLEGHENY_MOUNTAIN_SECTION",0.1,"WATERS RUN","MD508S",
0,0,2377.54,0,0,0,0,0,0.000000000,1993,1,0,0,28,0,0.071424053,392.0248,27,0,0,0,0,0,0,0,0
```

- 8. GEOGRAPHIC AND SPATIAL INFORMATION
- 8.1 Minimum Longitude
- -83 Degrees 14 Minutes 39 Seconds West (-83.24444 Decimal Degrees)
- 8.2 Maximum Longitude
- -74 Degrees 15 Minutes 32 Seconds West (-74.25890 Decimal Degrees)
- 8.3 Minimum Latitude
- 36 Degrees 33 Minutes 12 Seconds North (36.55350 Decimal Degrees)
- 8.4 Maximum Latitude
- 42 Degrees 21 Minutes 20 Seconds North (42.35566 Decimal Degrees)
- 8.5 Name of Area or Region

Mid Atlantic: EPA Region III which includes Delaware, Maryland, New York, Virginia, and West Virginia

- 9. QUALITY CONTROL / QUALITY ASSURANCE
- 9.1 Data Quality Objectives See Chaloud and Peck (1994)
- 9.2 Quality Assurance Procedures See Chaloud and Peck (1994)
- 9.3 Unassessed Errors NA
- 10. DATA ACCESS
- 10.1 Data Access Procedures
- 10.2 Data Access Restrictions
- 10.3 Data Access Contact Persons
- 10.4 Data Set Format
- 10.5 Information Concerning Anonymous FTP
- 10.6 Information Concerning Gopher and WWW
- 10.7 EMAP CD-ROM Containing the Data
- 11. REFERENCES

Chaloud, D.J. and D.V. Peck. 1994. Environmental Monitoring and Assessment Program - Surface Waters: Integrated Quality Assurance Project Plan for the Surface Waters Resource Group. U.S. Environmental Protection Agency. Office of Research and Development. Washington, D.C.

Lazorchak, J.M., Klemm, D.J., and Peck D.V. (editors). 1998. Environmental Monitoring and Assessment Program- Surface Waters: Field Operations and Methods for Measuring the Ecological Condition of Wadeable Streams. EPA/620/R-94/004F. U.S. Environmental Protection Agency, Washington, D.C.

12. TABLE OF ACRONYMS

13. PERSONNEL INFORMATION

Project Manager
Dr. John Stoddard
U.S. Environmental Protection Agency
NHEERL Western Ecology Division
200 S.W. 35th Street
Corvallis, OR 97333
541-754-4441
541-754-4716(FAX)
stoddard@mail.cor.epa.gov

Quality Assurance Officer
Dave Peck
U.S. Environmental Protection Agency
NHEERL Western Ecology Division
200 S.W. 35th Street
Corvallis, OR 97333
541-754-4426
541-754-4716(FAX)
davep@mail.cor.epa.gov

Information Management, EMAP-Surface Waters Marlys Cappaert
OAO c/o U.S. Environmental Protection Agency NHEERL Western Ecology Division
200 S.W. 35th Street
Corvallis, OR 97333
541-754-4467
541-754-4716(FAX)
cappaert@mail.cor.epa.gov